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ABSTRACT

Obesity often increases the risk of cancer and worsens the prognosis. Unlike most types of cancer, several studies concluded that obesity had an 
inverse influence on LUAD survival. Increasing evidence showed that obesity-related and adipocyte-derived lncRNAs were associated with cancer 
initiation, progression, drug resistance, and the tumour microenvironment in lung cancer. In the present study, we identified two BMI-associated 
lncRNAs (LINC01500 and lnc-MAFB-1) that could potentially regulate tumour progression in LUAD. Both lncRNAs downregulated significantly in the 
obese lung. The increased expression level of LINC01500 could be observed in LUAD tumors and predict poorer survival.In addition, through estima-
tion from bulk RNA-seq and profiling in single-cell sequencing, we found that the expressions of both BMI-associated lncRNAs were associated with 
macrophages. The downregulation of BMI-associated lncRNAs could create a less immunosuppressive microenvironment, leading to a more efficient 
response toward immunotherapy. To our knowledge, this is the first study to investigate BMI-associated lncRNAs in lung. We believe our findings can 
expand the understanding of obesity and the immune microenvironment in lung cancer.
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INTRODUCTION
Whilst lung cancer remains the leading cause of cancer mortality worldwide, 
more and more researchers are engaged in the debate of the relationship 
between obesity and lung cancer. Extensive investigations on this topic have 
been conducted in large cohorts after adjusting potential confounders such 
as smoking and race. Several studies also included additional details to cat-
egorize obesity, for example, using BMI trajectories and metabolic obesity 
as phenotype. Although the effect of obesity on small cell lung cancer and 
lung squamous cell carcinoma (LUSC) remains inconclusive, a consistent 
inverse effect of obesity on lung adenocarcinoma (LUAD) were observed 
across studies, especially for those patients receiving immune checkpoint in-
hibitor treatments. However, the mechanism for this “obesity paradox” is still 
unclear. Some investigators suggested that the immunologic derangements 
led by obesity could upregulate PD-1 on immune cells [1-9].

Unlike most obesity-induced tumors, lung is not directly exposed to adipose 
tissue. Thus, the association between lung cancer and obesity may be more 
directly driven by the emic microenvironment. Increasing evidence suggested 
that lncRNAs, which often act as modulators in the tumor microenvironment, 
are associated with cancer initiation, progression, and drug resistance. Re-
cent studies showed that obesity-related and adipocyte-derived lncRNAs, 
such as MALAT1, H19, and MEG3 could deregulate the cancer-associated 
pathways and affect the survival of lung cancer. Based on these current find-
ings, we hypothesized that lncRNAs may serve as the missing link connecting 
obesity and lung cancer [10-24]. 

In this present study, we reported our preliminary findings of BMI-associated 

lncRNAs. We identified and examined the influence of these lncRNAs on lung 
cancer progression and prognosis. In addition, we explored the relationship 
between BMI, BMI-associated lncRNAs, and the immune microenvironment, 
as well as the potential immunotherapy response. Lastly, we were able to 
validate the presence of such lncRNAs and their potential immunosuppres-
sive function from a single-cell study. To our knowledge, this is the first study 
to investigate BMI-associated lncRNAs in lung. We believe that our findings 
can expand the understanding of obesity and the immune microenvironment 
in lung cancer.

METHODS
Data Collection and Processing 

We acquired the count data and the fragments per kilobase of per million 
(FPKM) of RNA-sequencing data of the Clinical Proteomic Tumor Analysis 
Consortium (CPTAC) lung cancer study and TCGA lung study from the GDC 
Data Portal (https://portal.gdc.cancer.gov/). We further extracted body height, 
weight, gender, race, smoking status, and survival information for subse-
quent analysis if available. We also obtained normalized log2 transformed 
transcripts per million (TPM) of single-cell sequencing data, together with 
smoking status, from LUAD dataset GSE131907 to profile the expression of 
lncRNAs in the single-cell resolution.

Statistical Analysis

R version 4.1 was used in the following analysis. To identify the lncRNAs 
associated with BMI in lung, we divided subjects in the CPTAC study into 
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two groups, BMI>25 and BMI<25. We used DESeq2 package to identify the 
differential expressed lncRNAs between these two groups from adjacent nor-
mal lung samples in both LUAD and LUSC datasets. We then examined the 
relationship between lncRNA and lung cancer in the TCGA dataset with the 
one-sided t-test and validated them in the CPTAC dataset with the one-sided 
paired t-test. We used the R package “survminer” to decide the cutting point 
of lncRNA expression for survival analysis. The Kaplan-Meier curves and Cox 
proportional hazard regression were performed under the R package “surviv-
al” and visualized with “survminer”. The online tool KM-plotter (https://kmplot.
com/analysis/) was used to validate the finding. The average expression and 
the percentage of expression were calculated to profile the lncRNA expres-
sion in the single-cell dataset. 

To investigate the relationship between lncRNAs and the immune microen-
vironment, we used 7 algorithms to estimate the immune cell compositions 
in the CPTAC dataset, including CIBERSORT-ABS, EPIC, MCP-counter, 
quanTIseq, xCELL, ImmuneCellAI and TIMER. In addition, we calculated the 
immunopheno score and TIDE (Tumor Immune Dysfunction and Exclusion) 
dysfunction score to predict immunotherapy response. We then calculated 
the correlation between the lncRNAs expression and these scores [25-33].

RESULTS
Identification of BMI-associated lncRNAs in Lung 

We used the lncRNA expression from adjacent normal lung in LUAD and 

LUSC datasets to identify BMI-associated lncRNAs in lung. In the CPTAC 
study, there are 66 patients with BMI<=25 and 36 patients with BMI>25 in 
LUAD dataset. Meanwhile, there are 40 patients with BMI<=25 and 50 patients 
with BMI>25 in LUSC dataset. After quality control, differential expressed 
lncRNAs were defined as lncRNAs with log2 fold change>1 and adjusted 
p-value<0.05. A total of 14 lncRNAs were selected as differential expressed
lncRNAs in LUAD and 13 in LUSC. We noticed that two BMI-associated ln-
cRNAs (LINC01500 and lnc-MAFB-1) were downregulated in BMI>25 groups
in both LUAD and LUSC datasets (seen in Table 1). We hypothesized that
these two lncRNAs are BMI-associated lncRNAs in lung. SNPs in LINC01500
have been reported to link with childhood obesity and familial colorectal can-
cer. In the meantime, little is known for lnc-MAFB-1, which was once known
as AL035665.1 and RP4-644L1.2 in previous human assembly annotations
with ensemble id ENSG00000229771 [34, 35]. (Table 1)

Characterization of BMI-Associated lncRNAs in Lung Cancer 

To further investigate these two BMI-associated lncRNAs, we examined their 
expression and their influence on survival in lung cancer. In the TCGA data-
set, we found that the expression of LINC01500 was significantly increased in 
LUAD tumors, but not in LUSC. The upregulation of LINC01500 can also be 
observed in LUAD nonsmokers. We later validated this finding in the CPTAC 
dataset with paired samples. Similar patterns for LINC01500 were observed 
only in LUAD patients (Figure 1A). Nevertheless, the dynamic of lnc-MAFB-1 
in lung cancer is nonconclusive. 

Figure 1: A : The lncRNAs expression between normal adjacent lung tissues and tumors in LUAD.
B: The influence of lncRNA expressions on overall survival in CPTAC dataset.

C :The influence of lncRNA expressions on overall survival in KM plotter.
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Furthermore, from CPTAC dataset, after adjusting for smoking, we found that 
both LINC01500 and lnc-MAFB-1 in the normal adjacent lung can predict tu-
mor survival in LUAD (LINC01500: hazard ratio=2.963, 95%CI 1.113-7.892, 
p=0.03; lnc-MAFB-1: hazard ratio=3.395, 95%CI 1.264-9.119, p=0.015) (seen 
in Table 1, Figure 1B). Higher expression of these two lncRNAs suggested a 
poorer overall survival. A similar influence on survival could also be observed 
from the lncRNAs expression in tumors, but not statistically significant. This is 
consistent with the finding that tumor-adjacent tissues could build a superior 
prognosis model. In addition, after adjusting for smoking, we validated the 
influence of LINC01500 on LUAD survival in a larger sample from the KM plot-
ter (hazard ratio=2.48, 95%CI 1.61-3.82, p=1.9E-05) (Figure 1C). We could 
not validate the influence of lnc-MAFB-1 in the KM plotter because of the 
lack of lncRNA coverage in previous studies. Moreover, the influence of these 
lncRNAs on cancer survival was not able to be observed in LUSC [36, 37].

BMI-Associated lncRNAs and Immune Microenvironment in LUAD 

First, we calculated the correlation between BMI-associated lncRNAs and 
immune cell compositions in CPTAC nonsmokers. We found that the ex-
pression of both LINC01500 and lnc-MAFB-1 were positively correlated with 
the composition of macrophages significantly in all 7 algorithms. In addition, 
the expression of LINC01500 was also significantly positively correlated with 
myeloid dendritic cells using CIBERSORT.ABS, MCP-counter, xCELL, and 
TIMER algorithms. Meanwhile, lnc-MAFB-1 was significantly negatively cor-
related with neutrophil cells, according to CIBERSORT.ABS, MCP-counter, 
quanTIseq, and TIMER. Macrophages, dendritic, and neutrophil cells are all 
considered major immunity mediators in lung.

We then inspected the correlation between the BMI-associated lncRNAs and 
potential immunotherapy response. Immunopheno score and TIDE dysfunc-
tion score are two models to evaluate and predict immunotherapy response. 
A potential positive immunotherapy response is often correlated with a higher 
immunopheno score and lower TIDE dysfunction score. Although there’s no 
correlation between BMI and immunopheno score, both LINC01500 and lnc-
MAFB-1 were negatively correlated with immunopheno score (LINC01500, 
r=-0.36, p=2E-04; lnc-MAFB-1, r=-0.27, p=0.007). This finding suggested 
that the downregulation of these lncRNAs were related to higher immuno-
pheno score and better immunotherapy response. On the other hand, BMI 
was negatively correlated with TIDE dysfunction score (r=-0.24, p=0.01) while 
LINC01500 showed a positive correlation (r=0.34, p=4E-04). This finding 
suggested that higher BMI and lower LINC01500 expression would gener-
ate a lower TIDE dysfunction score and hence predict better immunothera-
py response. We noted that in both prediction systems, these two lncRNAs 
showed a significantly positive correlation with myeloid-derived suppressor 
cells (MDSCs) which are closely related to T cell exclusion signature.

BMI-Associated lncRNAs in Single-Cell LUAD Profile

We used dataset GSE131907 to profile the BMI-associated lncRNAs in 
single-cell resolution, with clusters annotated by the author. We found that 
LINC01500 was specifically expressed in monocyte-derived macrophages in 
LUAD and metastatic brain tumors. In the meantime, lnc-MAFB-1 not only 
showed expression in monocyte-derived macrophages in tumor cells but 
metastatic lymph node cells. Lnc-MAFB-1 was also sparsely expressed in 
exhausted CD8+ T cells and regulatory T cells in lung tumors. These findings 
agree with our previous finding that both BMI-associated lncRNAs are linked 
to macrophages and immunosuppressive microenvironments [38].

DISCUSSION
The As far as we know, this is the first study to identify BMI-associated ln-
cRNAs in lung. Most lncRNAs express in a cell-, tissue- and situation-specific 
manner. Therefore, our finding could hint at the lung-specific mediators that 
link obesity and cancer. Our finding suggested that these BMI-associated ln-
cRNAs could influence the progress and survival of LUAD, but not LUSC. This 
is consistent with the recent finding that, the inverse causal relation of obesity 
and cancer only exists in LUAD, but not in other types of lung tumors. In ad-
dition, we validated that the tumor-adjacent tissue could better predict cancer 
survival with fewer samples [3].

We also predicted the relationship between these BMI-associated lncRNAs 
and macrophages and validated it in a single-cell LUAD study. However, we 
found out that in peripheral blood samples, both these two lncRNAs were 
significantly upregulated in obese lung cancer patients, compared to lung 
cancer patients with normal BMI (samples not described in this manuscript). 
The opposite direction of the regulation pattern in peripheral blood indicated 
that the lncRNA-mediated network could appear in a tissue-specific manner. 
A recent study indicates that macrophage populations showed diverse regu-
lation function in different tissues, and between tissue-resident and recruited 
macrophages in lung. For example, macrophages in lung are associated with 
lipid catabolic process, response to oxidative stress, and myeloid leukocyte 
migration. Hence, investigators should put more effort to inspect the obesi-
ty-induced metabolic reprogramming of myeloid cells in lung. Even though 
the mechanisms of efficiency of immunotherapy in obesity LUAD patients are 
largely unknown, some researchers suggested that obesity may enhance the 
sensitivity of MDSCs and macrophages towards immunotherapy. This hy-
pothesis is agreed with our finding that BMI-associated lncRNAs were linked 
to macrophages and MDSCs, and thus could affect the response of immuno-
therapy [39, 40].

This is a preliminary study highlighting the BMI-associated lncRNAs and their 
potential regulator roles in lung cancer. Even though further validations are 
still in need, we hope that this study can provide a fresh perspective to inves-
tigate the relationship between obesity and the immune microenvironment in 
lung cancer.
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Table 1: The BMI-associated lncRNAs and their influence on LUAD survival

Ensembl gene id Gene

LUAD (BMI>25 vs. BMI<=25) LUSC (BMI>25 vs. BMI<=25) Overall survival in LUAD+

log2 (Fold-
Change) p-value p-value(ad-

justed)

log2

(Fold-
Change)

p-value p-value(-
adjusted) HR p-value

ENSG00000229771 lnc-MAFB-1 -1.23 1.05E-09* 4.68E-06 -1 5.18E-05* 0.023
3.395

(1.264,9.119)
0.015*

ENSG00000258583 LINC01500 -1.31 2.97E-06* 1.29E-03 -1 1.36E-04* 0.044
2.963

(1.113,7.892)
0.030*

Noted: * denote statistically significant; + fitting Cox proportional hazards model with expression of lncRNAs from normal adjacent tissues, after adjusting 
for smoking
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